Парадокс Монти Холла и принятие решений

Вчера смотрел онлайн лекцию Евгения Пенцака «Енріко Фермі проти Льва Толстого або геніальна ПРОСТОТА». К сожалению не смог послушать до конца, но то что услышал мне очень понравилось.

Там поднялся вопрос о принятии решений и был пример Парадокса Монти Холла.

Что это такое?

 

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Дверь 1 Дверь 2 Дверь 3 Результат если менять выбор результат если не менять выбор
Авто Коза Коза Коза Авто
Коза Авто Коза Авто Коза
Коза Коза Авто Авто Коза

При решении этой задачи обычно рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны 1/2, вне зависимости от первоначального выбора.

Вся суть в том, что своим первоначальным выбором участник делит двери: выбранная A и две другие — B и C. Вероятность того, что автомобиль находится за выбранной дверью = 1/3, того, что за другими = 2/3.

Для каждой из оставшихся дверей сложившаяся ситуация описывается так:

P(B) = 2/3*1/2 = 1/3

P(C) = 2/3*1/2 = 1/3

Где 1/2 — условная вероятность для данной двери при условии, что автомобиль не за дверью, выбранной игроком.

Ведущий, открывая одну из оставшихся дверей, всегда проигрышную, сообщает тем самым игроку ровно 1 бит информации и меняет условные вероятности для B и C соответственно на «1» и «0».

В результате выражения принимают вид:

P(B) = 2/3*1 = 2/3

P(C) = 2/3*0 =0

Таким образом, участнику следует изменить свой первоначальный выбор — в этом случае вероятность его выигрыша будет равна 2/3.

Одним из простейших объяснений является следующее. Вероятность того, что изначально была выбрана дверь, скрывающая козла, равна 66% (2/3). И это никак не связано с тем, что ведущий открыл дверь; козёл выбран с вероятностью 66% (2/3). Следовательно, смена выбранной двери обеспечит 66-процентную (2/3) вероятность выбора автомобиля.

Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла, т.е. парадоксом в бытовом смысле.

А ведь блин работает! Хотя подумать, есть одна ситуация в 3 двери и есть совершенно другая ситуация когда уже  2 двери!

Кто хочет попробовать вам сюда. http://sergey-a.ru/paradox/Untitled-1.html

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*